★★★★☆
3.0 étoiles sur 5 de 554 notations client
1999-06-22
Interpolation of Spatial Data: Some Theory for Kriging - de M. L. Stein (Author)
Details Interpolation of Spatial Data: Some Theory for Kriging
La ligne ci-dessous montre les spécificités supplémentaires concernant Interpolation of Spatial Data: Some Theory for Kriging
Le Titre Du Fichier | Interpolation of Spatial Data: Some Theory for Kriging |
Date de Lancement | 1999-06-22 |
Traducteur | Tricia Sheralyn |
Nombre de Pages | 401 Pages |
La taille du fichier | 46.52 MB |
Langue | Français & Anglais |
Éditeur | David & Charles |
ISBN-10 | 0066700061-QGN |
Format de E-Book | PDF ePub AMZ DOT PPT |
Écrivain | M. L. Stein |
ISBN-13 | 931-7820589286-EJZ |
Nom de Fichier | Interpolation-of-Spatial-Data-Some-Theory-for-Kriging.pdf |
Télécharger Interpolation of Spatial Data: Some Theory for Kriging Livre PDF Gratuit
Appareils Amazon Sélectionnez la section dans laquelle vous souhaitez faire votre recherche
2 hour seminar within the Geostatistics training course at WUR
Noté 005 Retrouvez Interpolation of Spatial Data Some Theory for Kriging et des millions de livres en stock sur Achetez neuf ou doccasion
A summary of past work and a description of new approaches to thinking about kriging commonly used in the prediction of a random field based on observations at some set of locations in mining hydrology atmospheric sciences and geography
Classical spatial statistics cannot be used in this problem since i kriging is not invariant by rotation ii the arithmetic mean cannot be used for circular data We first review common adaptations of kriging to circular data Drawbacks of these methods are illustrated on our example Finally we extend circular data theory to spatial statistics
Kriging and cokriging based on that theory depend on expressing spatial variation of the property in terms of variograms and they minimize the prediction erros which are themselves estimated Used on pedological parameters data oridinary universai and block krigings and cokrigings geostatistical interpolation methods or techniques are expiored and compared in order to identify the
develop kriging for a historical review see Cressie 1990 Classical statistical methods of sampling can also be used to estimate the average or total amount of a variable